skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Berman, Joseph"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Achieving multicapability in a single soft gripper for handling ultrasoft, ultrathin, and ultraheavy objects is challenging due to the tradeoff between compliance, strength, and precision. Here, combining experiments, theory, and simulation, we report utilizing angle-programmed tendril-like grasping trajectories for an ultragentle yet ultrastrong and ultraprecise gripper. The single gripper can delicately grasp fragile liquids with minimal contact pressure (0.05 kPa), lift objects 16,000 times its own weight, and precisely grasp ultrathin, flexible objects like 4-μm-thick sheets and 2-μm-diameter microfibers on flat surfaces, all with a high success rate. Its scalable and material-independent design allows for biodegradable noninvasive grippers made from natural leaves. Explicitly controlled trajectories facilitate its integration with robotic arms and prostheses for challenging tasks, including picking grapes, opening zippers, folding clothes, and turning pages. This work showcases soft grippers excelling in extreme scenarios with potential applications in agriculture, food processing, prosthesis, biomedicine, minimally invasive surgeries, and deep-sea exploration. 
    more » « less
  2. Objective: In this study, we aimed to develop a novel electromyography (EMG)-based neural machine interface (NMI), called the Neural Network-Musculoskeletal hybrid Model (N2M2), to decode continuous joint angles. Our approach combines the concepts of machine learning and musculoskeletal modeling. Methods: We compared our novel design with a musculoskeletal model (MM) and 2 continuous EMG decoders based on artificial neural networks (ANNs): multilayer perceptrons (MLPs) and nonlinear autoregressive neural networks with exogenous inputs (NARX networks). EMG and joint kinematics data were collected from 10 non-disabled and 1 transradial amputee subject. The offline performance tested across 3 different conditions (i.e., varied arm postures, shifted electrode locations, and noise-contaminated EMG signals) and online performance for a virtual postural matching task was quantified. Finally, we implemented the N2M2 to operate a prosthetic hand and tested functional task performance. Results: The N2M2 made more accurate predictions than the MLP in all postures and electrode locations (p < 0.003). For estimated MCP joint angles, the N2M2 was less sensitive to noisy EMG signals than the MM or NARX network with respect to error (p < 0.032) as well as the NARX network with respect to correlation (p = 0.007). Additionally, the N2M2 had better online task performance than the NARX network (p ≤ 0.030). Conclusion: Overall, we have found that combining the concepts of machine learning and musculoskeletal modeling has resulted in a more robust joint kinematics decoder than either concept individually. Significance: The outcome of this study may result in a novel, highly reliable controller for powered prosthetic hands. 
    more » « less
  3. There has been a debate on the most appropriate way to evaluate electromyography (EMG)-based neural-machine interfaces (NMIs). Accordingly, this study examined whether a relationship between offline kinematic predictive accuracy (R2) and user real-time task performance while using the interface could be identified. A virtual posture-matching task was developed to evaluate motion capture-based control and myoelectric control with artificial neural networks (ANNs) trained to low (R2 ≈ 0.4), moderate (R2 ≈ 0.6), and high ( R2≈0.8 ) offline performance levels. Twelve non-disabled subjects trained with each offline performance level decoder before evaluating final real-time posture matching performance. Moderate to strong relationships were detected between offline performance and all real-time task performance metrics: task completion percentage (r = 0.66, p < 0.001), normalized task completion time (r = −0.51, p = 0.001), path efficiency (r = 0.74, p < 0.001), and target overshoots (r = −0.79, p < 0.001). Significant improvements in each real-time task evaluation metric were also observed between the different offline performance levels. Additionally, subjects rated myoelectric controllers with higher offline performance more favorably. The results of this study support the use and validity of offline analyses for optimization of NMIs in myoelectric control research and development. 
    more » « less